
<Insert Picture Here>

WebLogic JMS Messaging Infrastructure

WebLogic Server 11gR1 Labs

<Insert Picture Here>

Messaging Basics

Built-in Best-of-Breed Messaging (JMS) Engine
Years of hardening. Strong performance.

• WLS embeds within it a full-function high-performance Messaging

Engine that is on-par or superior to Messaging “pure-plays”

• Using WLS JMS eliminates the need to acquire and manage a 3rd

party Messaging product,

• reducing Infrastructure Costs

• Reducing licensing costs

• taking advantage of superior capabilities offered by this engine

Basics – Advantages of “Built-in”

• No additional installation: runs in same process space as WLS

• Integrated infrastructure

• Leverages core WLS protocols and services (RMI, thread pooling)

• WLS supplies Web Services, Servlets, and EJBs which work in concert with
JMS

• Integrated security

• Uses same user identities

• Leverages WLS role-based security model

• Integrated administration

• Unified administration console

• Unified configuration

• Robust, proven built-in transaction manager

• Optimal performance and scalability

• Applications can access JMS locally without a network call

• No need to serialize/de-serialize messages

• Connection pooling when used inside EJBs and Servlets

Basics – Standards and QoS

• Standards and protocol support
• Fully JMS 1.0.2 and 1.1 compliant (pub/sub and queuing)

• Fast, multicast-capable pub/sub

• File or Database persistence (both fully XA-capable)

• Enhanced XML message support

• Reliability and QoS
• Error destinations and retry counts to handle failed messages

• Message paging to support large sets of messages

• Timer services to reliably schedule future message delivery

Point-To-Point Queue

• Many message producers can serialize messages to

multiple receivers in a queue.

Rep - A

Rep - B

Rep - C

3

1

2

Caller
(Producer)

Incoming Calls
queue

Oracle WebLogic Server

Messages are
delivered to one

client.

Caller
(Producer)

Publish/Subscribe Topics

• Publishing and subscribing to a topic decouples

producers from consumers.

Distribution
topic

Oracle WebLogic Server

Publisher

Publisher

Messages are delivered
to multiple clients.

Subscriber

Subscriber

Subscriber

3 2 1

3 2 1

3 2 1

Oracle WebLogic Server JMS Features

• Oracle WebLogic Server JMS supports:

• Both the point-to-point and Publish/Subscribe JMS models

• Acknowledgement-based guaranteed delivery

• Transactional message delivery

• Durable subscribers

• Distributed destinations

• Recovery from failed servers

A

Oracle WLS JMS Architecture

JNDI tree

A1 > A

B1 > B

B

WebLogic Server

Persistent
storage
(file or DB)

JMS

JMS

Client 1

Client 2

JMS Server

JMS Server

Client

Typical JMS Messaging Process

WLS

JNDI

Look up a
destination.

To send messages,
these are required:
- Connection
- Session
- Destination

JMS Server

Destination: Queue

Destination: Topic

Destination

Connection

ConnectionFactory

Destination
is returned.

Create a
connection.

1

2

lookup and get
ConnectionFactory

3

4

5

Session

Create a
session.

Send
message.

Oracle WLS JMS Server
• In Oracle WLS, the messaging service is implemented through

a JMS server.

• A JMS server receives and distributes messages.

Oracle WebLogic Server

JMS
Server A

Persistence

JMS client

JMS client

QueuesQueuesQueues

TopicsTopicsTopics

JMS
Server B

QueuesQueuesQueues

TopicsTopicsTopics

JMS client

JMS client

JMS clientJMS client

… …

JMS Modules

• JMS resources can be configured as:

• System modules

• application modules.

Domain

«EAR»

«MyJMSDescriptor-

jms.xml»

config.xml

«demo-jms.xml»

Application module System
module

deploy

«weblogic-

application.xml

DD»

Connection Factories

• JMS connection factories are used to set default client

connection parameters, including:

• Message priority

• Message time-to-live (TTL)

• Message persistence

• Transactional behavior

• Acknowledgement policy

• Flow control

• WLS provides a default client connection factory that:

• Uses WebLogic’s default connection settings

• Is located on the server JNDI tree at
weblogic.jms.ConnectionFactory

Destination

• A destination is a lightweight object that is stored in JNDI.

• It is the target on a JMS server for sending messages and the

location from where messages will be consumed.

• The JMS destination types are:

• Queue (for the point-to-point model)

• Topic ((for the Publish/Subscribe model)

Durable Subscribers and Subscriptions

• Durable subscribers register durable subscriptions for

guaranteed message delivery even if the subscribers are

inactive.

• A subscriber is considered active if the Java object that

represents it exists.

• By default, subscribers are nondurable.

How a Durable Subscription Works

• Durable subscription is effective only when the client is inactive

during the time that the message is published.

• When the client becomes active again, its ID is used to retrieve

and redeliver messages.

JMS server

Topic A
(A durable subscription)

Active client
(A durable subscriber)

Client registers ID When the client is active,
messages are delivered.

Associated
with

Persistent store
database or file

Publisher client

Configuring a Durable Subscription

• To configure durable subscriptions, an administrator must:

• Create and configure a JMS store

• Configure connection factories or destinations as persistent

• Associate the JMS store with the JMS server

• The JMS store can be configured to use either of the following:

• A file store

• A JDBC Store (a connection pool)

<Insert Picture Here>

Messaging Manageability

Message Management

• Comprehensive monitoring statistics
• Stats for clients, destinations, JMS servers, pooling, transactions, …

• Message management
• View / browse all messages including invisible messages (birth-time,

transactional, retry delay)

• Delete, move, import, export messages (to XML files)

• Pause/resume destinations
• Prevent sends and/or consumes

• Fully dynamic
• Rarely requires manual XML editing or restarts

• Available via console, JMX, WLST (scripting)

• Reminder:
• Integrated infrastructure with WLS

• Integrated security with WLS

• Integrated administration with WLS

Monitoring JMS Servers

• Statistics are provided for the following JMS objects:

• JMS servers

• Connections

• Destinations

Monitoring and Managing Destinations

You can suspend or resume message
production and consumption.

Monitoring Queues

• In the Administration console, navigate to Services > Messaging
> JMS Modules.

• In the JMS Modules table, click the JMS module you have
created.

• In the Summary of Resources table, click the link to your queue,
and then click the Monitoring tab.

• The Messages High and Messages Total columns show nonzero
values indicating that messages have been received.

Viewing Active Queues and Topics

• In the Administration Console, navigate to the JMS

Modules and click the Active Destinations tab.

Managing Messages in a Queue

• You can enable messages to be viewed in the Administration

Console.

• After they are enabled, you can view and manage the

messages in a queue using the Administration Console.

<Insert Picture Here>

Messaging High Availability

What is High Availability for JMS?

Continued ability to send and receive

messages

Distributed

Destinations

All messages sent are processed Whole Server and

Service Migration

Seamless client failover Automatic

Reconnect

Continued ability to send when no remote

servers are available

Store and Forward

Client SAF

Distributed Destinations
aka “Clustered Destinations”

• Umbrella for a group of “member” queues or
topics in a cluster

• Appear as a single unit

• Provides high availability and scalability
• Multiple physical instances

• Parallel processing

• Scalability

• HA

• Load balancing and failover, with fine-grained control

Distributed Destinations

Producer
Consumer

Cluster A

Server B

Server A

Distributed Queue A

Distributed Queue A

Distributed

Queue A

JMS Server A

JMS Server B

Store and Forward (SAF)

• Store messages on local server
and forwards to remote server
when endpoint is available

• Increases reliability of
communication

• Forwarding between domains,
clusters, and servers

• Preserves message ordering

• Improvement over Messaging
Bridge

• SAF is faster and more scalable for
WLS-WLS connectivity

• Clusterable

• Messaging Bridge still supported and
useful for non-WLS connectivity or
pre-WLS 9.0 destinations

2

1

3

4

Message sent to
imported
destination

Message
stored
locally

Message
forwarded to
remote
destination

Message received
by remote
consumer

Messaging flow in SAF

Imported JMS

Destination

Local SAF

sending agent

Local JMS Producer Remote JMS Consumer

Local WebLogic
Server

Remote
WebLogic

Server

Remote JMS

Destination

1

2

3

4

4

5

Remote SAF
Context

Connection
Factory

Persistent

Store/Memory

Connection
Factory

SAF Resources In a JMS Module

• When configuring SAF resources for a JMS module,

you need to configure the following resources in a

JMS system module or application module:

• Imported SAF Destinations - local representation of a JMS

destinations (queues or topics) in a JMS module that is

associated with a remote server instance or cluster

• Remote SAF Context - URL of the remote server instance or

cluster where the JMS destination is exported from

• SAF Error Handling - define the action to be taken when the

SAF service fails to forward messages to a remote destination

SAF JMS Picture

Client Store And Forward

• Same concept as Store and Forward, except the messages are stored
on the client and are forwarded when the client is connected.

• Enables reliable messaging over unreliable network links.

• Small footprint on client side.

4
Message received

by a consumer

Client Application

Client looks up the

JMS destination

“Foo” through

JNDI using a

special JNDI initial

context, and sends

a message.

A. Message placed in

SAF store.

B. Client’s “send”

operation returns.

C. Client SAF forwards

message to queue “Foo”

on Server A.

Message is

enqueued on the

“Foo” queue

1 2
3

<Insert Picture Here>

Enterprise Features

Interoperability: Mapping, Wrapping, & Bridges

• Foreign JMS Servers and Destinations (Mapping)

• Optional configured mapping of remote JNDI resources to local JNDI

• Avoids hard-coding in app or descriptors

• Standard EJB or servlet resource references (Wrapping)

• Automatically pool referenced JMS resources when they are closed

• Automatically enlists JMS resources with the current transaction

• MDBs can directly consume from any JMS vendor

• Messaging Bridge

• Forwards from a “source” destination to a “target” destination.

• Store and Forward

JMS Unit of Order

• Problem Description
• Certain applications require strictly ordered

processing of messages

• Typically implemented by serializing processing
of ALL messages (kills performance) or adding
application complexity (detect or prevent out of
order processing)

• Solution: Unit of Order

• How this feature works
• Messages tagged with same Unit of Order (UOO)

are “processed” in order

• Applies across a cluster, too: messages routed to
DD member

• Concurrency through Multiple UOOs

• Stronger ordering semantics than the JMS
specification

• Benefits
• IT can support complex Business workflow

requirements without building major and costly
complexities into the apps or compromising
performance

• Reduces or eliminates DB lock contention

1 2 3 4 5 6 7 8 9

MDB 2MDB 1 MDB 3

State 1
• Msg 1 consumed by MDB 1
• Other UOO Red messages unavailable
• Msg 2 consumed by MDB 2

• Other UOO Blue messages unavailable

3 4 5 6 7 8 9

MDB 2MDB 1 MDB 3

State 2
• MDB 1 completes processing message 1
• Next UOO Red message becomes available
• Msg 3 consumed by MDB 3
• Other UOO Red messages unavailable

• …

Unit of Work

• Messages are grouped with a
group identifier

• At the final destination, messages
become available only when all
messages in the group have
arrived

• Messages are reordered as
specified by the UOW producer,
regardless of the order in which
they arrived

• Messages are received by a
single consumer with no gaps
between messages in the group

• “Intermediate Destinations” –
stops along the way for some
messages; UOW is ignored at
those destinations

Producer

3

2

1

MDB

1
2

3

MDB

MDB

New in 10.3: WebLogic Messaging .Net

Client

• Brings together two worlds: .Net and Java

• Alternative to existing C client

• Allows front end to be coded with .Net and
back end coded with WebLogic

• Fully managed code
• Single DLL, no JNI

• Based on JMS 1.1 API
• Many WebLogic extensions supported

• SAF, DD, Automatic Failover – all of our
Messaging Engine benefits

• Direct access to WebLogic JMS
• Uses existing socket configuration:

t3://WebLogicServer:port

• No third party bridging

Other WebLogic JMS Features

• Deployable Configuration: Optionally put configuration (destinations, etc)
in XML descriptor and deploy with application.

• Timed messages: Send a message that is not delivered to consumers until
a specified time

• Automatic Client Reconnect: Best effort to transparently reconnect clients
to cluster after a network outage (configurable).

• Sorted queues: Sort the messages on a queue based on message header
fields and/or user-defined properties; FIFO is the default

• Username in message: Optional.

• Message lifecycle logging: Text logging of fine grained events in message
life-cycle

• Multicast topics: Delivers messages to topic consumers using a multicast
protocol (fast but unreliable)

• XML messages: Store XML as Dom tree instead of text, filter topic
subscribers and queue messages using an XPath expression

• Logging Last Resource: Transactionally safe (ACID) 2PC tx optimization
for non-XA DB connections

Oracle Advanced Queuing Integration

• Enables easy interop with existing

AQ destinations

• This was a significant challenge in

previous releases!

• Leverages new JNDI provider in

AQ JMS client

• Uses standard WLS integration

features

• Foreign JMS Servers

• JDBC Data Sources

• MDBs

• Fully supports JTA transactions

JNDI

Foreign: AQ JMS Queue

JDBC Data Source

MDB
AQ JMS Client

