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Messaging Basics



Built-in Best-of-Breed Messaging (JMS) Engine
Years of hardening.  Strong performance.

• WLS embeds within it a full-function high-performance Messaging 

Engine that is on-par or superior to Messaging “pure-plays”

• Using WLS JMS eliminates the need to acquire and manage a 3rd

party Messaging product, 

• reducing Infrastructure Costs

• Reducing licensing costs

• taking advantage of superior capabilities offered by this engine



Basics – Advantages of “Built-in”

• No additional installation: runs in same process space as WLS

• Integrated infrastructure

• Leverages core WLS protocols and services (RMI, thread pooling)

• WLS supplies Web Services, Servlets, and EJBs which work in concert with 
JMS

• Integrated security

• Uses same user identities 

• Leverages WLS role-based security model

• Integrated administration 

• Unified administration console

• Unified configuration

• Robust, proven built-in transaction manager

• Optimal performance and scalability

• Applications can access JMS locally without a network call 

• No need to serialize/de-serialize messages

• Connection pooling when used inside EJBs and Servlets



Basics – Standards and QoS

• Standards and protocol support
• Fully JMS 1.0.2 and 1.1 compliant (pub/sub and queuing)

• Fast, multicast-capable pub/sub

• File or Database persistence (both fully XA-capable)

• Enhanced XML message support

• Reliability and QoS
• Error destinations and retry counts to handle failed messages

• Message paging to support large sets of messages

• Timer services to reliably schedule future message delivery



Point-To-Point Queue

• Many message producers can serialize messages to 

multiple receivers in a queue.
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Publish/Subscribe Topics

• Publishing and subscribing to a topic decouples 

producers from consumers.
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Oracle WebLogic Server JMS Features

• Oracle WebLogic Server JMS supports:

• Both the point-to-point and Publish/Subscribe JMS models

• Acknowledgement-based guaranteed delivery

• Transactional message delivery

• Durable subscribers

• Distributed destinations

• Recovery from failed servers
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Oracle WLS JMS Server
• In Oracle WLS, the messaging service is implemented through 

a JMS server.

• A JMS server receives and distributes messages.
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JMS Modules

• JMS resources can be configured as:

• System modules 

• application modules.
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Connection Factories

• JMS connection factories are used to set default client 

connection parameters, including:

• Message priority

• Message time-to-live (TTL)

• Message persistence

• Transactional behavior

• Acknowledgement policy

• Flow control

• WLS provides a default client connection factory that:

• Uses WebLogic’s default connection settings

• Is located on the server JNDI tree at 
weblogic.jms.ConnectionFactory



Destination

• A destination is a lightweight object that is stored in JNDI.

• It is the target on a JMS server for sending messages and the 

location from where messages will be consumed.

• The JMS destination types are:

• Queue (for the point-to-point model)

• Topic ((for the Publish/Subscribe model)



Durable Subscribers and Subscriptions

• Durable subscribers register durable subscriptions for 

guaranteed message delivery even if the subscribers are 

inactive.

• A subscriber is considered active if the Java object that 

represents it exists.

• By default, subscribers are nondurable.



How a Durable Subscription Works

• Durable subscription is effective only when the client is inactive 

during the time that the message is published.

• When the client becomes active again, its ID is used to retrieve 

and redeliver messages. 
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Configuring a Durable Subscription

• To configure durable subscriptions, an administrator must:

• Create and configure a JMS store

• Configure connection factories or destinations as persistent

• Associate the JMS store with the JMS server

• The JMS store can be configured to use either of the following:

• A file store

• A JDBC Store (a connection pool)
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Messaging Manageability



Message Management

• Comprehensive monitoring statistics
• Stats for clients, destinations, JMS servers, pooling, transactions, …

• Message management
• View / browse all messages including invisible messages (birth-time, 

transactional, retry delay)

• Delete, move, import, export messages (to XML files)

• Pause/resume destinations
• Prevent sends and/or consumes

• Fully dynamic
• Rarely requires manual XML editing or restarts

• Available via console, JMX, WLST (scripting)

• Reminder:
• Integrated infrastructure with WLS

• Integrated security with WLS

• Integrated administration with WLS



Monitoring JMS Servers

• Statistics are provided for the following JMS objects: 

• JMS servers

• Connections

• Destinations



Monitoring and Managing Destinations

You can suspend or resume message 
production and consumption.



Monitoring Queues 

• In the Administration console, navigate to Services > Messaging 
> JMS Modules. 

• In the JMS Modules table, click the JMS module you have 
created.

• In the Summary of Resources table, click the link to your queue, 
and then click the Monitoring tab. 

• The Messages High and Messages Total columns show nonzero 
values indicating that messages have been received.



Viewing Active Queues and Topics

• In the Administration Console, navigate to the JMS 

Modules and click the Active Destinations tab.



Managing Messages in a Queue

• You can enable messages to be viewed in the Administration 

Console. 

• After they are enabled, you can view and manage the 

messages in a queue using the Administration Console.
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Messaging High Availability



What is High Availability for JMS?

Continued ability to send and receive 

messages
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Service Migration
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Reconnect
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Distributed Destinations
aka “Clustered Destinations”

• Umbrella for a group of “member” queues or 
topics in a cluster 

• Appear as a single unit

• Provides high availability and scalability
• Multiple physical instances

• Parallel processing

• Scalability

• HA

• Load balancing and failover, with fine-grained control
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Store and Forward (SAF)

• Store messages on local server 
and forwards to remote server 
when endpoint is available

• Increases reliability of 
communication

• Forwarding between domains, 
clusters, and servers

• Preserves message ordering

• Improvement over Messaging 
Bridge

• SAF is faster and more scalable for 
WLS-WLS connectivity 

• Clusterable

• Messaging Bridge still supported and 
useful for non-WLS connectivity or 
pre-WLS 9.0 destinations
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Messaging flow in SAF
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SAF Resources In a JMS Module

• When configuring SAF resources for a JMS module, 

you need to configure the following resources in a 

JMS system module or application module:

• Imported SAF Destinations - local representation of a JMS 

destinations (queues or topics) in a JMS module that is 

associated with a remote server instance or cluster

• Remote SAF Context - URL of the remote server instance or 

cluster where the JMS destination is exported from

• SAF Error Handling - define the action to be taken when the 

SAF service fails to forward messages to a remote destination
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Client Store And Forward

• Same concept as Store and Forward, except the messages are stored 
on the client and are forwarded when the client is connected.

• Enables reliable messaging over unreliable network links.

• Small footprint on client side.
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Enterprise Features



Interoperability: Mapping, Wrapping, & Bridges

• Foreign JMS Servers and Destinations (Mapping)

• Optional configured mapping of remote JNDI resources to local JNDI

• Avoids hard-coding in app or descriptors

• Standard EJB or servlet resource references (Wrapping)

• Automatically pool referenced JMS resources when they are closed

• Automatically enlists JMS resources with the current transaction

• MDBs can directly consume from any JMS vendor

• Messaging Bridge

• Forwards from a “source” destination to a “target” destination.  

• Store and Forward



JMS Unit of Order

• Problem Description
• Certain applications require strictly ordered 

processing of messages

• Typically implemented by serializing processing 
of ALL messages (kills performance) or adding 
application complexity (detect or prevent out of 
order processing)

• Solution: Unit of Order

• How this feature works
• Messages tagged with same Unit of Order (UOO) 

are “processed” in order

• Applies across a cluster, too: messages routed to 
DD member 

• Concurrency through Multiple UOOs

• Stronger ordering semantics than the JMS 
specification

• Benefits
• IT can support complex Business workflow 

requirements without building major and costly 
complexities into the apps or compromising 
performance

• Reduces or eliminates DB lock contention
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• Other UOO Red messages unavailable
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• MDB 1 completes processing message 1
• Next UOO Red message becomes available
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• Other UOO Red messages unavailable

• …



Unit of Work

• Messages are grouped with a 
group identifier

• At the final destination, messages 
become available only when all 
messages in the group have 
arrived

• Messages are reordered as 
specified by the UOW producer, 
regardless of the order in which 
they arrived

• Messages are received by a 
single consumer with no gaps 
between messages in the group

• “Intermediate Destinations” –
stops along the way for some 
messages; UOW is ignored at 
those destinations
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New in 10.3: WebLogic Messaging .Net 

Client

• Brings together two worlds: .Net and Java

• Alternative to existing C client

• Allows front end to be coded with .Net and 
back end coded with WebLogic

• Fully managed code
• Single DLL, no JNI

• Based on JMS 1.1 API
• Many WebLogic extensions supported

• SAF, DD, Automatic Failover – all of our 
Messaging Engine benefits

• Direct access to WebLogic JMS
• Uses existing socket configuration: 

t3://WebLogicServer:port

• No third party bridging



Other WebLogic JMS Features

• Deployable Configuration: Optionally put configuration (destinations, etc) 
in XML descriptor and deploy with application. 

• Timed messages: Send a message that is not delivered to consumers until 
a specified time

• Automatic Client Reconnect: Best effort to transparently reconnect clients 
to cluster after a network outage (configurable).

• Sorted queues: Sort the messages on a queue based on message header 
fields and/or user-defined properties; FIFO is the default

• Username in message:  Optional.

• Message lifecycle logging: Text logging of fine grained events in message 
life-cycle

• Multicast topics: Delivers messages to topic consumers using a multicast 
protocol (fast but unreliable)

• XML messages: Store XML as Dom tree instead of text, filter topic 
subscribers and queue messages using an XPath expression

• Logging Last Resource: Transactionally safe (ACID) 2PC tx optimization 
for non-XA DB connections 



Oracle Advanced Queuing Integration

• Enables easy interop with existing 

AQ destinations

• This was a significant challenge in 

previous releases!

• Leverages new JNDI provider in 

AQ JMS client

• Uses standard WLS integration 

features

• Foreign JMS Servers

• JDBC Data Sources

• MDBs

• Fully supports JTA transactions

JNDI

Foreign: AQ JMS Queue

JDBC Data Source

MDB
AQ JMS Client


